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Abstract

For the George B. Moody PhysioNet Challenge 2022,
our team, PhysioDreamfly, developed a deep neural
network approach for detecting murmurs and identify-
ing abnormal clinical outcomes from phonocardiograms
(PCGs). In our approach, a VGG-like CNN model is used
as the classifier. Images consisting of Log-Mel spectro-
grams and wavelet scalogram that transformed from un-
segmented PCGs are used as model inputs. We combined
the murmur and outcome labels to address the two tasks
as one multi-label task, and introduced a weighted focal
loss function to optimize the model. Our murmur detec-
tion classifier received a weighted accuracy score of 0.752
(ranked 11th out of 40 teams) and Challenge cost score of
12831(ranked 18th out of 39 teams) on the hidden test set.

1. Introduction

The phonocardiogram (PCG) signal conveys informa-
tion regarding the mechanical property of the heart. Auto-
mated PCG analysis is significant for improving diagnostic
efficiency and reducing overall healthcare costs, especially
in poor countries that lack trained professionals with aus-
cultation skills and basic healthcare facilities[1].

Traditional PCG signal analysis methods generally first
segments the signal, then extracts features from the seg-
mented PCGs, and finally trains a classifier to classify
these features[2]. In such methods, the effectiveness of
heart sound segmentation predominantly affects the accu-
racy of classification results. With the development of deep
learning and the improvement of hardware environment,
the processing of heart sound signals using deep learning
methods has become the focus of research[3].

The objective of Challenge 2022 is to identify the pres-
ence, absence, or unclear cases of murmurs (task 1) and
the normal vs. abnormal clinical outcomes(task 2) us-
ing heart sound recordings from multiple auscultation lo-

cations on the body and routine demographic informa-
tion[4]. In this paper, as part of the George B. Moody
PhysioNet Challenge 2022, we transformed PCG signals
into two-dimensional time-frequency representations and
developed a VGG-like CNN model for detecting murmurs
and identifying abnormal clinical outcomes. More details
are described in the following sections.

2. Methods

For classifier training, we used all the recordings from
the public training set, which contains 3163 records from
942 patients[5]. Details about the Challenge 2022 dataset
can be found in[1].

2.1. TF-Domain Representation

Two different methods were applied to transform PCGs
into time–frequency (TF)-domain representations. And
these two representations are used together as the input of
the CNN model that described in Section 2.2.

2.1.1. Wavelet Scalogram

The first TF-domain representation is the wavelet scalo-
grams obtained using the continuous wavelet transform.
The scalograms obtained from the wavelet transform tends
to perform better than Short-time Fourier transform(STFT)
spectrums because it has a better time-frequency resolu-
tion.

Before the transformation, the original PCGs were
downsampled to 1KHz, and subsequently passed through a
Butterworth bandpass filter with a pass band of 10-400Hz.
We chose the cgaus3 wavelet basis after trying several con-
tinuous wavelet basis functions.

The wavelet scaling parameter varies from 1 to 16; the
complex wavelet coefficients for the different scales were
then returned. And we calculated the absolute values of the
coefficients to obtain a two-dimensional array of real num-
bers. We then downsampled the array in the horizontal axis
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by a factor of 8 to reduce the size of the model input. An
image of length N/8 and height 16 was obtained after the
continuous wavelet transform for a heart sound recording
of length N .

2.1.2. Log-Mel Spectrogram

The second TF-domain representation is the Log-Mel
spectrogram. Mel spectrogram is obtained by transforming
the STFT spectrum into the Mel scale, which is more suit-
able for human auditory responses to different frequencies.
Log-Mel spectrogram is the logarithmic transformation of
the Mel spectrogram, and it shows a powerful capability in
sound identification tasks.

The PCGs were also downsampled to 1KHz before
transformation. The PCGs were not filtered here to retain
components that might be useful for identifying low qual-
ity signals. For Log-Mel spectrum calculation, the window
length of STFT was set to 16 and step length of STFT was
set to 8, that is, each window has 50% overlapping sig-
nal. The number of Mel banks was 16, thus another image
of length N/8 and height was generated for a heart sound
recording of length N .

2.1.3. Combining

Although the average duration of each record in the
dataset is 23 seconds, the first 18 seconds of each heart
sound recording was used to generate the time-frequency
map due to limited video memory size of GPU. For record-
ings less than 18 seconds, the vacant part of the TF image
was filled with zeros. For each recording, we put the two
TF images together in the vertical axis direction. Then the
TF images of five locations were concatenated in horizon-
tal axis direction, from front to back, PV, TV, AV, MV and
Phc. For each patient, a grayscale image of size 32×11250
was generated and used as the input features of the classi-
fier. Finally the TF-domain images of all patients were nor-
malized to a range between [0, 1] using the mean and vari-
ance, and this mean and variance were retained as normal-
ization parameters for the test samples. This way, the dif-
ferences in the values of time-frequency images between
patients were preserved.

The Python PyWavelets library and Librosa library were
used to generate Wavelet scalograms and Log-Mel spectro-
grams.

2.2. Model Description

Visual Geometry Group(VGG) models[6] have a clean
structure and good performance in image classification.
We built the classifier based on the structure of VGG11,
as shown in Figure 1. We also used some 3×3 convolu-
tion kernels and layer-by-layer increasing convolution fil-
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Figure 1. Architecture of the VGG-like model. The
numbers in round brackets indicate the sizes of feature
maps(channel×height×length, if multiplication signs ex-
ist). The number in square brackets inside the convolution
module represents the convolution kernel size or pooling
size.

ters. However, unlike the original VGG11 model, we built
four similar convolution blocks and use batch normaliza-
tion and dropout in each block. We also reduced the num-
ber and size of fully connected layers to reduce the model
size.

The combined time-frequency images are fed into
four similar consecutive convolution blocks. Each con-
volution block contains two duplicate Convolution2D-
BatchNorm2D-ReLu structures, as well as a 2×2 size max-
imum pooling layer to reduce the feature map size, and a
dropout layer to avoid overfitting.

Due to the presence of the maximum pooling layer, the
height and width of the feature map are reduced to half of
the original size after each convolution block. The chan-
nels of the feature map become 64 after the first convolu-
tion block, and are doubled block by block thereafter, up to
512 channels after the fourth convolution block. A global
maximum pooling layer is then used to produce an output
array of length 512. Next are two fully-connected layers.
In the first fully-connected layer, five normalized demo-
graphic features are stitched into the input array. As with

Page 2



the normalization of the time-frequency images, the means
and variances of the demographic features are retained as
normalization parameters for the test samples. The second
fully connected layer reduces the output to 5, which is the
length of the concatenated labels of the two tasks.

2.3. Training Details for Two Tasks

We concatenated the labels of the two tasks as the final
labels of the model. The first three values of the labels
represent Presence, Unknown and Absence, respectively,
and the last two represent Abnormal and Normal clinical
outcomes, respectively. This merges two single-label clas-
sification tasks into one multi-label classification task. We
accomplished both tasks in one training session, and re-
duced the degree of overfitting in training.

Since the distribution of the data is unbalanced, based
on[7], we design a weighted focal loss function, which is
defined as follows.

Loss =
1

c

c∑
i=1

wi ∗ FLi (1)

FLi =

{
− (1− y′i)

γ
log y′i, yi = 1

−y
′γ
i log (1− y′i) , yi = 0

(2)

Where c is the number of label categories after one-hot
encoding, c = 5 in this case. And y′i is the model output
of the data belonging to category i after sigmoid transfor-
mation; y is the true label (0 or 1) for data belonging to
category i; The parameter γ is set to 2. wi is the weight co-
efficient of each category. According to our experience,
too large a gap between the weights tends to make the
output result worse. Therefore the weight vector is set to
w = [1.2, 1, 1, 1.2, 1]T.

Model parameters were optimized using the ADAM op-
timizer. L2 normalization were used, with a weight de-
cay parameter of 0.01. The initial learning rate was set to
0.0003 and decayed by a factor of 0.7 every 10 epochs.
We set the training batch size to 16, and after propagating
every 2 batches in the forward direction, the accumulated
gradients are then used to update the weight parameters.
This allows for a larger equivalent batch size with limited
video memory.

As shown in Figure 2, when the 48th epoch of training
is completed, the model was saved and used as a classifier
for the murmur detection task. Then the weight vector of
the loss function was adjusted to w = [1.2, 1, 1, 2, 1.5]T.
Another ten epochs are trained, and the final model is saved
for the outcome classification task.

All these hyper-parameters are empirically optimized.
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Figure 2. Training phase and evaluation phase of the clas-
sifier model. Note that the normalization process and de-
mographic information of the features are omitted for sim-
plicity.

2.4. Model Evaluation

The training phase and evaluation phase of the model is
shown in Figure 2. The test PCGs are processed using the
same method described in section 2.1 and the TF images
are normalized using the mean and variance of the training
set.

The data for each patient in test dataset were fed into the
trained murmur model and the outcome model, and soft-
max operations were performed on the first three values
and the last two values of the model output respectively.
For the murmur task, it was judged as Absent only if its
probability was greater than 0.6, otherwise it was judged
as the category with higher probability among Unknown
and Absent. For the outcome task, it was judged as Nor-
mal only if its probability was greater than 0.52. Both
thresholds were empirically determined by changing the
thresholds between 0 and 1 with a step of 0.01, using the
weighted score and cost as criteria.

3. Result

For both tasks, we evaluated our classifier model on the
public training set using repeated stratified 5-fold cross-
validation.
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Training Validation Test Ranking
0.776± 0.026 0.737 0.752 11/40

Table 1. Weighted accuracy metric scores (official Chal-
lenge score) for our final selected entry (team Physio-
Dreamfly) for the murmur detection task, including the
ranking of our team on the hidden test set. We used strati-
fied 5-fold cross validation on the public training set, one-
time scoring on the hidden validation set and hidden test
set.

Training Validation Test Ranking
10870± 250 9577 12831 18/39

Table 2. Cost metric scores (official Challenge score) for
our final selected entry (team PhysioDreamfly) for the clin-
ical outcome identification task, including the ranking of
our team on the hidden test set. We used stratified 5-fold
cross validation on the public training set, one-time scor-
ing on the hidden validation set and hidden test set.

The results of the murmur task are shown in Table 1.
And the results of the outcome task are shown in Table 2.

We also ran five-fold cross-validation experiments on
the public training set using only one TF-domain represen-
tation and using a combination of two type of TF-domain
representations as inputs. The results are displayed in Ta-
ble 3. When only one TF-domain representation is used,
its height (number of wavelet scales or Mel Banks) is set
to 32 to ensure the consistency of the model’s input dimen-
sions.

WS LMS Combined
Weighted Accuracy 0.734 0.760 0.776

Cost 11298 11103 10870

Table 3. Weighted accuracy metric scores and Cost metric
scores for different input TF-domain representation. The
results are all obtained using five-fold cross-validations on
the public training set. Explanation of abbreviations: WS:
Wavelet Scalogram; LMS: Log-Mel Spectrogram.

4. Discussion and Conclusions

We used two types of 2D representations of PCGs and
a VGG-like network with multi-labels for murmurs and
outcomes classification, and the results show that this is
a competitive solution with a simple architecture.

A limitation of this work is that only the first 18 sec-
onds of each recording were utilized. And the labels of
the recordings for each location, which may helpful to im-
prove the classification accuracy, were not fully utilized.
Moreover, as a multi-label model, we simply concatenated
the labels and did not take full advantage of the correla-

tion between the two classes of labels. We also tried to
combine the labels of the two tasks using the random k-
labelsets method, but obtained poor results. According to
our conjecture, it is because the amount of data in each
category is too small after the labels are combined.
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